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Abstract

A systematic methodology is presented to obtain the vortex-induced vibrational modes of a riser, based on data from

CFD coupled to a long beam under tension and placed in sheared cross-flow; two profiles were tested: (a) linear, and (b)

exponential. The modes we estimate are in fact nonlinear equilibria between the flow-induced excitation forces and the

structural dynamics and are characterized by varying amplitude and phase along the span; these are complex modes,

mixtures of traveling and standing waves. Simplifying procedures to represent the VIV response in terms of a few

clusters of modes have been applied successfully, reducing substantially the data needed to represent the VIV response.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Vortex-induced vibrations (VIV) of bluff, flexibly mounted rigid structures and long flexible structures with bluff

cross-section, placed within a transverse oncoming flow, constitute a self-excited, self-limiting process. Indeed,

excitation forces are caused by an instability of the wake flow, but once the structure starts vibrating, the forces change

and eventually become resistive, beyond an amplitude of vibration typically around one transverse body dimension

(Sarpkaya, 1979; Zdravkovich, 1997; Govardhan and Williamson, 2000). The wake instability has a preferred

frequency, the Strouhal frequency f S; if the structural natural frequency is close to f S, then vibrations are excited at a

frequency near the natural and Strouhal frequency, as determined by the added mass of the structure, which is

frequency- and amplitude-dependent. Hence, within a uniform current the spectrum of the excitation forces, as well as

the spectrum of the system response, is found to have a large peak, often the only peak, within a narrow frequency

range relatively close to its natural frequency (Triantafyllou et al., 2003).

In the case of a flexible structure, such as a uniform taut string, or a uniform tensioned beam, placed in a uniform

current, a narrow-band response may be observed, resulting in apparently standing waves, such as one would expect

from free vibrations of such structures. However, these are self-excited vibrations whose amplitude is limited by either

the structural damping or the self-limiting nature of the fluid forces; hence, they can be thought of as nonlinear dynamic

equilibria of the fluid-structure interaction process. Since they result from a resonant matching between fluid excitation

and small-amplitude (hence linearizable) structural response, the nonlinearity is almost entirely due to the fluid. We will

call these flow-structure interaction monochromatic, or narrow-band responses modes, recognizing that they may bear

no resemblance to free vibration structural modes.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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In the case of nonuniform current, the excitation is not at a single frequency, since the Strouhal frequency depends linearly

on the spatially variable speed of flow (Stansby, 1976). As a result, a wide-band excitation is obtained, resulting in excitation

of a single natural frequency, if the natural frequencies are spaced far apart from each other; or of several natural frequencies

of the system, if densely spaced (Vandiver et al., 1996). The mechanics of multi-frequency response are largely unknown,

since the parametric space is too large to explore experimentally or numerically, even at low Reynolds number.

If a single frequency is excited in a sheared current, it is expected qualitatively that energy is input at a frequency close to the

local Strouhal frequency over a part of the flexible structure, and then is carried away to be dissipated at another part of the

structure, where the local Strouhal frequency is different and the fluid force resists the traveling wave, providing a damping

force. In such a case, the response of the structure cannot be described in the form of standing waves, which do not allow

energy to be carried along the length of the structure. Semi-empirical programs, which utilize structural models combined with

experimental fluid data to represent the flow–structure interaction phenomenon, predict the presence of complex modes, i.e. a

response whose amplitude and phase varies along the length of the structure, a mixture of traveling and standing waves

(Triantafyllou et al., 1999). Questions as to how the excitation/damping forcing is distributed along the length, and which

frequency predominates are important for understanding the phenomenon and developing effective models for representing it

(Gopalkrishnan, 1992). When a multi-frequency response is excited, several modes will participate, one for each frequency of

excitation. Several additional questions arise: are these modes statistically stationary; do they interact strongly with each other;

and do they resemble the modes of single frequency response?

To address the problem, we have conducted a modal decomposition of detailed numerical simulation data. First we

employed spectral numerical simulations with no underlying turbulence model, of linear and exponential turbulent

shear flows, at Reynolds numbers up to 1000, past long tensioned beams with circular cross-section. We then employed

a numerical procedure, which will be described in detail, to extract these nonlinear modes and study their properties.

We should point out that our turbulent flows numerical simulations are related but not identical to direct numerical

simulations (DNS). By definition, DNS data can provide a very detailed description of the response as well as the

hydrodynamic forces both in the spatial and temporal domains. This is particularly true for structures with short or

moderately long aspect ratios (Lucor et al., 2001, 2005). Here, however, the structure is too long to meet the DNS

spanwise resolution requirement. For structures with long aspect ratios, it was shown that the initial conditions, the

numerical spanwise resolution and the extent of a numerical buffer region play an important role in the variability and

the accuracy of the response prediction (Lucor et al., 2003).
2. Derivation of the phase reconstruction

All quantities in the following are nondimensional quantities. The data are discrete data in time and space. Let us consider

the structural response at some particular time tk and some particular location zj along the span of the cylinder. Both the

spatial and temporal grids have equidistant grid points. We assume that we can express the response yðtk; zjÞ of the structure as

yðtk; zjÞ ¼ Re
XN

n¼1

eiontkfnðzjÞ

( )
¼ Re

XN

n¼1

ei2pnk=PðfnRe
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ðzjÞÞ

( )
. (1)

Here, on ¼ nO is defined as the nth circular frequency sample with O ¼ 2p=PDT , P is the total number of time samples and

DT is the sampling interval. We also define the nth frequency sample f n ¼ on=2p. The time tk refers to the kth time sample

and tk ¼ kDT . The integer n will also be referred as the nth temporal mode. The unknowns here are the real part fnRe
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Finally, we have

Y ¼ ½y1 � � � yk � � � yP�
T ¼ Ref½D̂1 /̂ � � � D̂k/̂ � � � D̂P/̂�Tbg ¼ RefDgRef/̂g �ImfDg Imf/̂g, (4)

with
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where the superscripted Tb is the block transpose operator. The matrix D is of size P blocks, where P is the total number of time

samples. Each subbloc is of size M � ðM �NÞ where M is the total number of points along the span and N is the total number

of modes. The total size of the matrix is PM �MN which represents 2PM2N coefficients if we take into account the complex

numbers storage for real and imaginary parts. This system of equations is overdetermined if P42N and must be solved in a

least-squares sense. Once, we have solved the system and obtained fnRe
ðzjÞ and fnIm

ðzjÞ for each n and each j in the domain, we

compute the modal amplitude and the phase angle contribution:

jfnðzjÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

nRe
ðzjÞ þ f2

nIm
ðzjÞ

q
and ynðzjÞ ¼ tan�1

fnIm
ðzjÞ

fnRe
ðzjÞ

. (6)

The response can be easily reconstructed as the real part of the summation of n multiple waves as follows:

yðtk; zjÞ ¼ Re
XN

n¼1

jfnðzjÞje
iðontkþynðzj ÞÞ

( )
. (7)

For each temporal mode n the corresponding wave form has a total phase ontk þ ynðzjÞ that varies from point to point along

the structure. If the dependence of the function y to the space variable z is linear, i.e. ynðzÞ ¼ knz, then one can easily compute

the phase velocity magnitude Cn ¼ on=kn for each mode n. The term kn represents a wavenumber and its sign the direction of

travel.

This method can be assimilated to a double discrete fourier transform (DFT) and the amplitude jfnðzjÞj to a measure

of the square-root of the power spectrum of the signal. In the following, we will apply the method to sets of dense

spatio-temporal data obtained from DNS.
3. Simulation parameters and structure model

We consider the cases of the coupled interaction between a shear inflow and a flexible cylinder of aspect ratio

L=D ¼ 2028. The type of structure that is considered is a flexible cylinder under constant tension T, possessing non-

negligible constant bending stiffness EI and only allowed to oscillate due to VIV in the cross-flow direction. The

structure is pinned and hinged at both ends. The nondimensional equation of motion, based on a reference length D

(cylinder diameter) and a reference velocity U (maximum inflow velocity), that is numerically solved is

€y� o2
c

q2y

qz2
þ o2

b

q4y

qz4
¼

1

2

CLift

m
, (8)

where oc ¼ ðT=rsU
2Þ

1=2 and ob ¼ ðEI=rsU
2D2Þ

1=2 are the nondimensional cable phase velocity and the beam phase

velocity, respectively; rs is the structural linear density. The forcing involves the nondimensional lift coefficient CLift

computed iteratively by the three-dimensional flow solver.

The corresponding eigenspectrum in vacuum of that beam-cable structure is expressed as a function of the

wavenumber k:

o2 ¼ o2
bk4
þ o2

ck2; k ¼
np
ðL=DÞ

. (9)
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The natural frequencies are here non-dimensional quantities. Here, n represents the nth spatial sine Fourier mode

ðsinðnpz=LÞÞ of the structure. In the following, we will refer to it as nz. The phase velocity C is defined in this case as

C ¼ o=k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

bk2
þ o2

c

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ob2

nzp
L=D

� �2

þ o2
c

s
. (10)

For all examples worked in this paper, the mass ratio of the structure is m ¼ rs=rf D2 ¼ 2, the cable phase velocity is

oc ¼ 35, the beam phase velocity is ob ¼ 450 (rf is the fluid volumic density). The dimensional frequency values f̂ n may

be computed with a proper scaling: f̂ n ¼ ðf nUÞ=D. The choice of including a priori the added mass coefficient in the

computation of the natural frequencies of the structure is difficult because the added mass is not constant for different

frequencies (Vandiver, 1993).

The excitation bandwidth and the extent of lock-in are strongly influenced by the type and the magnitude of the shear

(Vandiver, 1993). These can be measured by the shear fraction Sfr ¼ DU=Umax and the shear parameter b ¼ ðD=LÞSfr,

which are nondimensional parameters. Moreover, if the excitation bandwidth includes the natural frequencies of more

than one mode, a multi-moded response with no clear lock-in regions will most likely be dominant over the span. A

measure of the likelihood of lock-in is the product between the excitation bandwidth and the modal density. The

excitation bandwidth Df , due to the sheared flow, can be estimated using a reduced velocity of approximately Ur ¼ 5:9
and the variation in the velocity DU . The modal density of a constant tension cable is 1=f 1, where f 1 ¼ o1=2p is the first

mode natural frequency obtained from Eq. (9). For a constant tension cable, the potential number of responding spatial

modes referred to as Nz, can be approximated by Nz ¼ Df =f 1 ¼ DU=ðUrf 1Þ where the different variables involved are

non-dimensional quantities (Vandiver, 1993).

4. Results

The hydrodynamic loads in Eq. (8) are computed by a parallel three-dimensional Navier–Stokes solver, N�kTar,

based on the spectral/hp element method (Karniadakis and Sherwin, 1999) and used for various VIV applications

(Lucor et al., 2001, 2003, 2005; Dong and Karniadakis, 2005). This version of the code employs a hybrid scheme

utilizing Fourier collocation in the spanwise z-direction (cylinder axis) and Jacobi-Galerkin formulation on (x–y)-planes

perpendicular to the cylinder axis. The spanwise Fourier decomposition offers a more flexible alternative to general full

three-dimensional mesh/flow computation, and allows for a relatively low computational cost. In case of shear flows,

the spanwise resolution becomes a critical issue (Lucor et al., 2003) and enough Fourier modes have to be used along

this direction in order to capture the scale of the correlation length of the flow. Furthermore, the Fourier decomposition

implies periodicity of the solution and of the imposed sheared velocity profile at the inflow. Therefore, there must exist a

confined region or buffer region along the spanwise direction in which the velocity adjusts itself to satisfy periodicity

(Lucor, 2004).

A 2-D hybrid grid of 1018 elements in the ðx; yÞ-plane (Evangelinos and Karniadakis, 1999) with polynomial order

p ¼ 8 and 64 Fourier complex exponential modes in the z-direction (corresponding to a resolution of 128 collocation

points) are used. The spatial resolution in the (x–y)-plane insures the presence of (at least) four computational nodes

within the flow boundary layer developing at the wall at Re ¼ 1000. This resolution is appropriate to resolve all the

turbulent scales in the (x–y)-plane and the larger scales only along the z-direction. However, based on our experience

and the study in (Lucor et al., 2003), we believe that this spanwise resolution is sufficient to accurately capture the

response within a 15% error range at these moderate shear parameters and Reynolds numbers. The temporal resolution

used in this study provides roughly 5000 time samples per period of oscillation. In this work, buffer region velocity

profiles are represented by third-order polynomials (linear case) and exponential functions (exponential case) that

insure continuity and periodicity of the velocity profile, its slope and its curvature. In agreement with Lucor et al.

(2003), the length of the buffer region is kept lower than 10% of the total length of the structure.

We define the Reynolds number based on the maximum velocity of the incoming shear inflow that is always located

at zero depth. In our study, we set it to be Re ¼ 1000. First, we consider the case of a linearly sheared flow past a flexible

cylinder; then the case of an exponentially sheared flow; both cases representing realistic situations corresponding to

experimental and field conditions (Furnes, 1998).

4.1. Linear shear

In this case we obtain: Sfr ¼ DU=Umax ¼ 0:7 and b ¼ ðD=LÞSfr ¼ 3:45� 10�4. A 70% variation in flow velocity is

much larger than the approximately 25% maximum lock-in bandwidth which is suggested as an upper limit in Vandiver
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(1993). The potential number of simultaneously responding modes is approximately Nz ¼ 14. These results indicate that

a multiple-mode response is likely.

In the following, the numerical data we present have been windowed using a Hanning window and zero padded prior

to the modal decomposition in order to reach a spectral resolution Df n ¼ 0:125%. Fig. 1 shows the time-evolution of

the cross-flow response along the span. The minimum inflow velocity is 30% of the maximum velocity and is located at

maximum depth. The depth-axis is normalized by D. Fig. 2 shows the spanwise spectrum jfnðzjÞj versus frequencies,

obtained from the phase reconstruction procedure described in Section 2. A total number of N ¼ 512 modes

(cf. Eq. (1)) are used in the decomposition in order to get a good resolution. Fig. 2(b) displays a close-up view. Fig. 3(a)

shows the span-averaged values of the modal amplitude response. As seen in Lucor et al. (2003), the existence and

magnitude of low modes in the response depend strongly on their presence in the initial conditions of the structure.

When they exist in our simulations, those low modes seem to be sustained by the system for a long time, despite the lack

of any hydrodynamic forcing at the corresponding frequencies. Therefore, we believe that low modes are most likely

unphysical in this case and can be neglected (if they do exist, they do not contribute significantly to the fatigue of the

material anyway). The graph exhibits three clear main peaks at f ¼ 0:182; 0:193; 0:204. We note, however, that each of

these three frequency peaks is dominant only over a portion of the span, with the highest frequency dominating close to
Fig. 1. Time-evolution of the spanwise distribution of the crossflow non-dimensional response yðt; zÞ of the riser.

Fig. 2. (a) Spanwise distribution of the modal amplitude response jfnj; (b) close-up of jfnj around the Strouhal frequency.
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Fig. 3. Span-averaged distribution of the modal amplitude response jfnj: (a) linear case; (b) exponential case.

Fig. 4. Spanwise modal phase angle response yn: (a) wrapped phase angle; (b) unwrapped phase angle.
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the surface, the medium frequency around the mid and low regions, and the lowest frequency along the bottom one-

third of the span. This is clear on the iso-contour plot of Fig. 2(b) that shows a close-up of the modal amplitude

distribution. We also note the emergence of the lower modes along the bottom half part of the cylinder. As one

considers regions from top to bottom, the leading peak shifts from right to left in the spectrum. The energy is mainly

distributed among the three leading frequencies.
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Fig. 4 shows the modal phase angle ynðzjÞ as a function of z, at all frequencies. Fig. 4(a) shows the distribution of the

phase angle. As it exhibits discontinuities when the phase jumps at multiples of 2p, it is harder to interpret than the right

plot that shows the unwrapped numerical values. We notice a region in the low frequency modes with almost no

spanwise variation, corresponding to standing waves. For medium and high modes, there exists a dominant trend of

linearly decreasing phase angle from top to bottom, demonstrating the existence of traveling waves from the surface to

the bottom (cf. Eq. (7)). In few places we find an opposite gradient, which means that the traveling waves progresses in

the opposite direction. In Fig. 4(a), we note that there exist groups of inclined bands defined by dark lines, that spread

along the span-frequency plot; these dark lines represent phase jumps. These bands are almost parallel to the cylinder

axis for the low modes, indicating standing waves in the physical space. The structures become slanted for higher modes

with slopes that tend to 90� relative to the cylinder axis, indicating traveling waves with increasingly faster phase

velocity.

We note two additional phenomena of interest: first, there are regions of strong reflections close to the domain

boundaries, manifesting themselves as ‘‘cells’’ of rectangular shape; they are more apparent for high frequencies, and on

the side of the low inflow velocity (maximum depth). Second, we note the presence of longitudinal discontinuities in the

slopes of the band structures, particularly for frequencies around f n ¼ 0:2 and higher. This shows that the increase of

the phase velocity versus frequency is not continuous, as modes travel in groups; one group travels at a certain speed,

while the next group travels at a different speed.

Fig. 5 highlights the piecewise almost-linear behavior of the phase angle yn along the span, and the presence of

reflection close to the boundaries. Fig. 5(a) shows the spanwise unwrapped phase angle at the three peak frequencies

corresponding to Fig. 3(a). In Fig. 5(b) we present the corresponding slopes that form quasi-piecewise step functions.

For a given mode n a constant positive slope indicates a wave traveling from top to bottom at constant speed. A

negative sign indicates a wave progressing from bottom to top. We recall that the local slope of yn is the first-order

approximation to the wavenumber kn.

Fig. 6(a) shows the spanwise wavenumber kn for all frequencies. Here, the amplitude of the contour plot indicates the

wavenumber magnitude, while the sign only indicates the direction of traveling. We can identify three main regions: the

dark regions, toward the low modes, correspond to standing waves; the light gray regions correspond to traveling waves

moving from top (high inflow velocity) to bottom; and the medium gray regions correspond to traveling waves moving

from bottom to top.

Fig. 6(b) shows the corresponding excited spatial sine Fourier modes equal to ðknðzjÞLÞ=pD.

A short study (not presented here) showed the existence of a correlation between the magnitude of the modal phase

amplitude jfnj and the modal phase angle yn. Indeed, a comparison between the span-averaged distribution of the

modal phase angle slopes and the span-averaged distribution of the modal amplitude, away from the regions of strong
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Fig. 5. (a) Spanwise unwrapped phase angle ynðzjÞ at three different frequencies; (b) corresponding spanwise wavenumber kn.
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Fig. 6. (a) Spanwise wavenumber kn of the riser at all frequencies; (b) spanwise distribution of the spatial sine Fourier mode at all

frequencies.

Fig. 7. (a) Inflow velocity profile for the exponential case; (b) corresponding time-evolution of the crossflow non-dimensional response

yðt; zÞ of the riser.
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reflections, indicated a strong correlation between the two quantities. We noticed in particular that the two curves

synchronized well: troughs in the latter correspond to notches in the former, while maxima in the spectrum coincide

with the centers of (almost) linearly increasing regions. We recall that notches in the slopes of the phase angle

correspond to reflecting waves, traveling from bottom to top.
4.2. Exponential shear

Exponentially sheared profiles represent more realistic configurations for marine engineering applications. The shear

fraction and shear parameter are important parameters; as well as the shape of the inflow profile, in particular how fast

the velocity distribution drops along the span of the structure. Fig. 7(a) shows the inflow velocity as function of the

span. The shear fraction is Sfr ¼ DU=Umax ¼ 0:9 and b depends on the value of the slope. We can define it as:

b ¼ ðD=ŪÞðqUðzÞ=qzÞ; hence, using averaged values, b � 1:75� 10�3. Again the variation in flow velocity is large and

the number of potentially responding modes is approximately Nz ¼ 18, indicating a probable multi-frequency response.

Again, the numerical data we present have been windowed using a Hanning window and zero-padded prior to the

modal decomposition. A total number of N ¼ 512 modes (cf. Eq. (1)) are used in the decomposition. Fig. 7 shows the

time-evolution of the cross-flow response across the span. The maximum inflow velocity occurs at zero depth and the

minimum inflow velocity, equal to 10% of maximum, at maximum depth. Fig. 8(a) shows the spanwise spectrum
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Fig. 8. (a) Spanwise modal amplitude jfnj; (b) phase angle response yn.
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jfnðzjÞj, obtained from the phase reconstruction procedure, after Hanning windowing and zero-padding of the original

data. Fig. 3(b) shows the span-averaged values of the modal amplitude response. There are more peaks than in the

linear case and the total energy is spread out over many frequencies. We notice some relatively low frequencies in the

½0:05; 0:1� range that are excited and capture a significant part of the energy in particular on the side of the low inflow

incoming velocity. These low modes have to be distinguished from the very low modes which are most likely unphysical

(Lucor et al., 2003). Fig. 8(b) reveals more pronounced reflection waves than in the linear case and the traveling waves

do not reach the bottom. This is probably due to the almost constant-velocity region close to the bottom (cf. Fig. 7(a)).

The energy injected by the current at the surface is distributed and propagated over some distance down the surface, but

the shear is not strong enough to carry it to the ocean floor. Fig. 9 shows a piecewise almost-linear change of the phase

angle yn along the span, showing reflections close to the boundaries. Fig. 9(a) shows the spanwise unwrapped phase

angle at the three highest peak frequencies corresponding to the right plot of Fig. 3(b). In Fig. 9(b), we show the

corresponding slopes that form quasi-piecewise-step functions. For a given mode n, a constant positive slope indicates a

traveling wave from top to bottom, while a negative sign indicates that the wave progresses from bottom to top. The

difference with the linear case is that the phase velocity of the three traveling waves are different and their magnitude

increases with increasing frequency.

4.3. Low-order model

The modal decomposition proposed here is intended to shed some light on the principal mechanisms of flow-structure

energy transfer. A full decomposition of the data is not tractable because it requires too many modes. We propose to

simplify the decomposition by considering only the most energetic modes, in the form of clustered packets of adjacent

modal responses near a spectral peak. The success of this decomposition is judged on the basis of how closely the sum of

these selected modes represents the total response. The statistical measure of the approximation is: the root mean square

(r.m.s.) value of the response yr:m:s: at each location zj along the cylinder, which is related to the energy distribution of

the response. We define

yr:m:sðzjÞ ¼
1

P

XP

k¼1

ðyðtk; zjÞ � ȳðzjÞÞ
2

( )1=2

, (11)

where ȳðzjÞ is the mean value in time, and P is the total number of time samples; the full decomposition of the response

being given in Eq. (7). Due to the orthogonality of the DFT basis, the r.m.s. fluctuations can be directly expressed as a

function of the modal amplitude coefficients, such that we have

yr:m:s:ðzjÞ ¼
XN

n¼1

1

2
jfnðzjÞj

2

( )1=2

. (12)
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Fig. 9. (a) Spanwise (unwrapped) phase angle ynðzjÞ at three different frequencies; (b) corresponding spanwise wavenumber kn.
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The summation starts here with the second mode in order to exclude the mean value. For a low-order model, the

approximated response ŷ is represented with a smaller number of modes NsoN which forms a subset of the original

space. The new representation and corresponding fluctuations read

ŷðtk; zjÞ ¼ Re
XNs

n¼1

jfnðzjÞje
iðontkþynðzj ÞÞ

( )
and ŷr:m:s:ðzjÞ ¼

XNs

n¼1

1

2
jfnðzjÞj

2

( )1=2

. (13)

If the total energy in the system was exactly distributed among a finite number of discrete frequencies and the

signal was infinitely repeatable, the spectrum of the response would be zero everywhere except at those frequencies,

and these modes would be sufficient to compute exactly the r.m.s. values. However, the brevity of the

original signal, combined with the frequency variability of the excitation, lead to spectral leakage of the energy into

neighboring frequencies, forming lobes of various widths. Hence, there is a numerical as well as a physical reason for the

existence of those clusters of modes in the frequency domain. The variability of the excitation force, caused by such

factors as the shear fraction, shear parameter, inflow profile shape, Reynolds number, and turbulence level; and the

structural properties, such as mass ratio, damping factor, aspect ratio, control the width of those lobes, which vary with

frequency and along the span. We first decompose the frequency domain into an arbitrary number Q of subdomains,

not necessarily contiguous or equal in length, based on the location and magnitude of peaks in the modal amplitude

spectrum (cf. Fig. 10). Each domain b is located around a local maximum and is itself divided into two subdomains b�

and bþ on each side of the local frequency peak. The subdomains are therefore equal in number to the Q selected

maxima. This procedure and, in particular, the search of those points and indexing of the subdomains is repeated for

each spanwise location zj . We write

ŷr:m:s:ðzjÞ ¼
XQ

b¼1

FbðzjÞ

( )1=2

with FbðzjÞ ¼
Xhbð1Þ

n¼hbð�1Þ

1

2
jfnðzjÞj

2. (14)

Here the function hb maps the frequency interval b under consideration to a reference ½�1; 1� interval. Therefore, the
hbð�1Þ value corresponds to the lower bound of the frequency interval; and hbð1Þ to the upper bound. The upper point is

excluded in the summation of the next interval to avoid counting it twice.



ARTICLE IN PRESS

Fig. 10. Schematic of the domain decomposition and modal amplitude reconstruction at a specific zj location. In this example, the

number of subdomains is Q ¼ 3. Each subdomain b is split into two parts, one on each side of a selected frequency peak. Small black

dots at the edge of the shaded area represent the target spectrum. Open circles represent the reconstructed Gaussian-shaped spectrum.

D. Lucor et al. / Journal of Fluids and Structures 22 (2006) 905–917 915
We decompose the previous relation as

FbðzjÞ ¼
Xhbð0Þ�1

n¼hbð�1Þ

1

2
jf�n ðzjÞj

2 þ
Xhbð1Þ

n¼hbð0Þ

1

2
jfþn ðzjÞj

2. (15)

The modal distribution on each subdomain is approximated by a Gaussian function with a free parameter s which is

adjusted to fit the data. The choice of a Gaussian-type approximation of the lobe shape is arbitrary, but proved to be

well adapted to the particular problem we study. The final expression is

ŷr:m:s:ðzjÞ ¼
XQ

b¼1

jfhbð0Þ
j

Xhbð0Þ�1

n¼hbð�1Þ

e�ð1=2Þððn�hbð0ÞÞ=Ps�
b
Þ
2

þ
Xhbð1Þ

n¼hbð0Þ

e�ð1=2Þððn�hbð0ÞÞ=Psþ
b
Þ
2

" #( )1=2

, (16)

with s�b and sþb being defined as follows:

s�b ¼
ðhbð�1Þ � hbð0ÞÞ

2

2P2 logðjfhbð0Þ
j=jfhbð�1Þ

jÞ

( )1=2

and sþb ¼
ðhbð1Þ � hbð0ÞÞ

2

2P2 logðjfhbð0Þ
j=jfhbð1Þ

jÞ

( )1=2

. (17)

The numerical procedure is applied to the linear and the exponential cases. Fig. 11 compares the r.m.s. spanwise

distribution values of the original response and the approximated response for different number of lobes Q. Fig. 11(a)

shows results for the linear case, while Fig. 11(b) shows results for the exponential case. We see that the r.m.s. values of

the approximated response converge to the r.m.s. values of the original response as we increase Q. We also notice than

the r.m.s. values are larger on the side of the high inflow velocity (close to the surface) for the exponential case, but

not for the linear case. Moreover, standing wave solutions are more apparent in the linear profile case, particularly

close to the domain boundaries, than for the exponential profile case. Fig. 11(c) shows the percent error

� ¼
PM

j¼1ŷr:m:s:ðzjÞ=
PM

j¼1yr:m:s:ðzjÞ

� �1=2
of the r.m.s. values versus the total number of subdomains Q for the linear

and the exponential cases. The rate of convergence is a nonlinear function of Q; less modes are necessary to reach the

same level of accuracy in the linear case than in the exponential case, as expected. For the linear case, only three

subdomains (Q ¼ 3), equivalent to knowing seven discrete modal amplitudes (cf. Fig. 10), are enough to recover more

than 75% of the energy. For the exponential case, 13 spectral values are required to reach the same approximation.
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Fig. 11. Spanwise distribution of the original and approximated responses as function of the number of subdomains Q used: (a) linear case,

(b) exponential case, (c) Convergence of the r.m.s. values versus the number of subdomains Q for the linear and the exponential cases.

D. Lucor et al. / Journal of Fluids and Structures 22 (2006) 905–917916
5. Conclusions

We have developed a systematic methodology to extract the VIV modes of a riser, based on data from CFD coupled

to a long (L=D � 2000) tensioned beam placed transversely to (a) a linearly sheared flow, and (b) an exponentially

sheared flow. The ‘‘modes’’ we estimate are in fact nonlinear equilibria between the flow-induced excitation forces and

the structural dynamics.

A principal feature of riser modes is that they are complex modes possessing varying amplitude and phase at each

point of the riser, and cannot be described by standing waves. For higher frequencies and for both the linear and

exponential shear, the mid-span of the beam shows mainly traveling waves from top (high velocity) to bottom, while the

ends contain reflections due to the boundary conditions. Low frequency modes are largely standing waves.

We have developed simplifying procedures to represent the VIV response in terms of a few clusters of modes, which

nonetheless capture the essence of the response.
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